

INTRODUCTION

Vespel® CP parts & shapes are a family of fiber-reinforced polymers that exhibit excellent strength to weight ratios. This family employs a variety of forms of fiber reinforcements singularly or in combination. The part geometry and production volumes generally guide the selection of the type of reinforcement from woven fabric to chopped fiber. The selection of the fiber material(s) (carbon, graphite, glass, aramid) and the polymer matrix (polyimide, phenolic, epoxy) is based upon the application's operating conditions (thermal & mechanical). Because of the wide selection of reinforcing structures, fiber materials, and polymers, the Vespel® CP family of parts and shapes offers the designer a wide array of flexibility.

	GRADES OF VESPEL® CP PARTS & SHAPES			
REINFORCING STRUCTURE	WOVEN FABRIC	CYLINDRICAL BRAID	CHOPPED FIBER	WOUND FIBER
	CP-0644 CP-0648 CP-0650 CP-0664	CP-8000 CP-8001 CP-8002	CP-0301 CP-0801	
ADES	CP-2010			
GRI	CP-8010			
	CP-9805 — CP-9836			
GEOMETRY	Thin, Flat Laminates	Thin-walled Hollow Straight or Flanged Cylinders	Complex 3-D Shapes	Long, Hollow Cylinders
DISTINGUISHING PROPERTIES	X-Y versus Z Directionality of Properties	Hoop versus Axial Directionality of Properties	Geometrically Oriented Properties	Hoop versus Axial Directionality of Properties
APPLICATIONS	Washers, Wear Strips, Slide Blocks	Bushings	Block Clamps	

For more information about DuPont[™] Vespel[®]:

UNITED STATES DuPont Engineering Polymers Pencader Site Newark, DE 19714-6100 Tel: 800-222-VESP Fax: (302) 733-8137	ASIA-PAC Japan	IFIC DuPont K.K. Arco Tower 8-1, Shimomeguro 1-chome Meguro-ku, Tokyo 153-0064 Tel: 03-5434-6989 Fax: 03-5434-6982	Taiwan/ China	DuPont Taiwan Limited 13th Floor, Hung Kuo Building 167, Tun Hwa North Road Taipei, Taiwan 105 Tel: 02-719-1999 Fax: 02-712-0460
EUROPE DuPont de Nemours (Belgium) BVBA-SPRL Engineered Parts Center A. Spinoystraat 6 B-2800 Mechelen Belgium Tel: ++32 15 441527 Fax: ++32 15 441408	Korea	DuPont Korea Limited 4/5 Floor, Asia Tower, #726 Yeoksam-dong, Kangnam-ku Seoul 135-082 Tel: 02-222-5200 Fax: 02-222-5470		

This information is offered without charge as part of the DuPont Company's service to its customers, but DuPont cannot guarantee that favorable results will be obtained from the use of such data. It is intended for use by persons having technical skill, at their discretion and risk.

All of the property data discussed in this brochure are based upon laboratory tests and/or performance of Vespel[®] parts in specific applications. The maximum use temperature, PV limit and other performance parameters of virtually all engineering materials will vary somewhat from application to application, and between laboratory data and actual applications, depending upon a number of factors intrinsic to each application. Therefore, the only way to determine how Vespel[®] parts will perform in your application is to test them in your application.

DuPont warrants only that the material itself does not infringe the claims of any United States patent; but no license is implied nor is any further patent warranty made.

CAUTION: Do not use DuPont materials in medical applications involving permanent implantation in the human body or permanent contact with internal body fluids or tissues.

Do not use DuPont materials in medical applications involving brief or temporary implantation in the human body or contact with internal body fluids or tissues, unless the material has been provided directly from DuPont under a contract which expressly acknowledges the contemplated use.

DuPont makes no representation, promise, express warranty or implied warranty concerning the suitability of these materials for use in implantation in the human body or in contact with internal body fluids or tissues.

The DuPont Oval Logo®, DuPont™, The miracles of science™, and Vespel® are trademarks or registered trademarks of E.I. du Pont de Nemours and Company. ©2003 E.I. du Pont de Nemours and Company. All rights reserved.

QUPOND?

The miracles of science VCP-053003

v e s p e l° CPP

We know. For your designs to be successful, they have to do more than work well. They have to keep on working, year after year, in some pretty harsh user environments. Wear and impact resistance are key. You want polyimide tube clamps that can replace cast aluminum or titanium, slide blocks that are stronger than powder-filled compositions, and wear strips that are self-lubricating. That's why CP was created. We have an array of fiber-enhanced composites for a range of unique

design needs.

COMPOSITES DESIGNED TO OUTLAST ALUMINUM OR TITANIUM. ACTUALLY, THEY'LL OUTLAST JUST ABOUT ANYTHING.

CP-0301 Sheet-molded and reinforced polyimide resin. Since it's lightweight yet tough, CP-0301 is ideal
 to use instead of aluminum or titanium in parts like aircraft brackets, gearbox adapter covers and seal plates. Plus, with CP-0301 tube clamps, you can create clamping systems that are more fatigue-resistant than those using die-cast aluminum.

CP-0644, CP-0648 & CP-0650 Washers that are lighter-weight than aluminum. Bushings that are ideal for high-temperature, high-friction, highly oxidative environments. Even self-lubricating slide blocks. CP-0644, CP-0648 and CP-0650 are fiber-reinforced composite fabrics that are stronger than powder-filled compositions, making your designs more durable.

CP-8000, CP-8001 & CP-8002 With high-temperature resistance, high oxidation resistance, and enough strength to eliminate the need for metal, CP-8000, CP-8001 and CP-8002 are ideal for bushings in gas turbine engine compressors, balls for self-aligning spherical bearing assemblies and more. That extraordinary strength comes from fiber-reinforced polymer matrices—braided into a tube or rope for maximum toughness.

CP-9800 Lightweight, new end effectors. The carbon fiber and epoxy combination make CP-9800 ideal for flat panel display and wafer handling applications. These clean, stiff effectors are more durable than traditional ceramic and aluminum end effectors.

VESPEL® CP 0301 0801

SHEET MOLDING COMPOUND SERIES

The sheet molding compound series of Vespel® CP parts consist of long, chopped fibers held in a variety of polymer matrices. The discontinuous nature of the fibers allows the fibers to align with the contours of the part, permitting the molding of relatively complex shapes, while providing the reinforcing strength where needed within the part. Superior strength versus aluminum at less weight, Vespel® CP frees the designer to explore ways to improve efficiency by reducing component weight and reducing friction.

CP-0301					
MECHANICAL	TEST METHOD	SI UNITS	ENGLISH UNITS		
ULTIMATE TENSILE STRENGTH Room Temp. 260°C/500°F	ASTM D-3039	340 MPa 320 MPa	50 ksi 47 ksi		
TENSILE MODULUS Room Temp. 260°C/500°F	ASTM D-3039	47,000 MPa 45,000 MPa	6,800 ksi 6,500 ksi		
ULTIMATE FLEXURAL STRENGTH Room Temp. 260°C/500°F	ASTM D-790	490 MPa 340 MPa	71 ksi 50 ksi		
FLEXURAL MODULUS Room Temp. 260°C/500°F	ASTM D-790	38,000 MPa 33,000 MPa	5,500 ksi 4,800 ksi		
ULTIMATE COMPRESSIVE STRENGTH ^a Room Temp. 260°C/500°F	ASTM D-695	370 MPa 240 MPa	53 ksi 35 ksi		
NOTCHED IZOD HARDNESS, ROCKWELL 15-T	ASTM D-256 ASTM D-2240	690 J/m 86	13 ft. lbs./in. 86		

THERMAL	TEST METHOD	SI UNITS	ENGLISH UNITS
GLASS TRANSITION TEMPERATURE, Tg	Thermal Mechanical Analysis	335°C	635°F
THERMAL EXPANSION COEFFICIENT (21–316°C/70–600°F)	ASTM D-696	2.9x10 ⁻⁶ m/m/°C	1.6x10 ⁻⁶ in./in./°F
THERMAL EXPANSION COEFFICIENT [®] (21-316°C/70-600°F)	ASTM E-228-85	27x10 ⁻⁶ m/m/°C	15x10 [.] 6 in./in./°F
THERMAL CONDUCTIVITY	ASTM C-177	0.30 W/m K	0.17 Btu/hr./ft./°F
OXIDATIVE STABILITY	See note ^b	2% Weight Loss	2% Weight Loss

OTHER PROPERTIES	TEST METHOD	SI UNITS	ENGLISH UNITS
WATER ABSORPTION (24 hrs. at 23°C/73°F)	ASTM D-570	0.5% Weight Gain	0.5% Weight Gain

Note: All values listed are for compression-molded samples and are measured in the plane perpendicular to the direction of molding pressure unless otherwise indicated.

^a Measured in the plane parallel to the direction of molding pressure.

^b 100 hours, 70 psia (483 kPa), 610 °F (321 °C) circulating air, saturated conditions, volume/surface area = .091 in.(2.31 mm).

CP-0301 may be processed using a variety of lay-up techniques with single or multiple debulking steps to optimize process capability for each part configuration. These design considerations can cause variation from the typical values listed above. Listed properties are based upon technical data that DuPont believes to be reliable. DuPont makes no warranties, expressed or implied, and assumes no liability in connection with use of this information.

CP-0801				
MECHANICAL	TEST METHOD	SI UNITS	ENGLISH UNITS	
ULTIMATE TENSILE STRENGTH Room Temp. 204°C/400°F	ASTM D-638	241 MPa 76 MPa	35 ksi 11 ksi	
TENSILE MODULUS Room Temp. 204°C/400°F	ASTM D-638	15,900 MPa 11,000 MPa	2,800 ksi 1,600 ksi	
ULTIMATE FLEXURAL STRENGTH Room Temp. 260°C/500°F	ASTM D-790	455 MPa 97 MPa	66 ksi 14 ksi	
FLEXURAL MODULUS Room Temp. 260°C/500°F	ASTM D-790	18,000 MPa 9,700 MPa	2,600 ksi 1,400 ksi	
ULTIMATE COMPRESSIVE STRENGTH [®] Room Temp. 204°C/400'F	ASTM D-695	172 MPa 48 MPa	25 ksi 7 ksi	
NOTCHED IZOD	ASTM D-256	1869 J/m	35 ft. lbs./in.	

THERMAL	TEST METHOD	SI UNITS	ENGLISH UNITS
GLASS TRANSITION TEMPERATURE, Tg	ASTM D-4065	175°C	347°F
THERMAL EXPANSION COEFFICIENT (21–316°C/70–600°F)	ASTM D-696	12x10 ⁻⁶ m/m/°C	7.0x10 [.] 6 in./in./°F
THERMAL CONDUCTIVITY	ASTM C-177	0.35 W/m K	0.20 Btu/hr./ft./°F

OTHER PROPERTIES	TEST METHOD	SI UNITS	ENGLISH UNITS
SPECIFIC GRAVITY	ASTM D-792	1.82 g/cc	1.82 g/cc
POISSON'S RATIO	_	0.30	0.30
WATER ABSORPTION (24 hrs. at 23°C/73°F)	ASTM D-570	0.5% Weight Gain	0.5% Weight Gain

Note: All values listed are for compression-molded samples and are measured in the plane perpendicular to the direction of molding pressure unless otherwise indicated.

^a Measured in the plane parallel to the direction of molding pressure.

CP-0801 may be processed using a variety of lay-up techniques with single or multiple debulking steps to optimize process capability for each part configuration. These design considerations can cause variation from the typical values listed above. Listed properties are based upon technical data that DuPont believes to be reliable. DuPont makes no warranties, expressed or implied, and assumes no liability in connection with use of this information.

THERMAL OXIDATION CURVES FOR CP-0301 (Tests performed in circulating air, saturated conditions.)

For more information about DuPont[™] Vespel[®]:

UNITED STATES DuPont Engineering Polymers Pencader Site Newark, DE 19714-6100 Tel: 800-222-VESP Fax: (302) 733-8137	ASIA-PAO Japan	CIFIC DuPont K.K. Arco Tower 8-1, Shimomeguro 1-chome Meguro-ku, Tokyo 153-0064 Tel: 03-5434-6989 Fax: 03-5434-6982	Taiwan/ China	DuPont Taiwan Limited 13th Floor, Hung Kuo Building 167, Tun Hwa North Road Taipei, Taiwan 105 Tel: 02-719-1999 Fax: 02-712-0460
EUNOPE DuPont de Nemours (Belgium) BVBA-SPRL Engineered Parts Center A. Spinoystraat 6 B-2800 Mechelen Belgium Tel: ++32 15 441527 Fax: ++32 15 441408	Korea	DuPont Korea Limited 4/5 Floor, Asia Tower, #726 Yeoksam-dong, Kangnam-ku Seoul 135-082 Tel: 02-222-5200 Fax: 02-222-5470		

This information corresponds to our current knowledge on the subject. It is offered solely to provide possible suggestions for your own experimentation. It is not intended, however, to substitute for any testing you may need to conduct to determine for yourself the suitability of our products for your particular purposes. This information may be subject to revision as new knowledge and experience become available. Since we cannot anticipate all variations in actual end-use conditions, DuPont makes no warranties and assumes no liability in connection with any use of this information. Nothing in this publication is to be considered as a license to operate under or a recommendation to infringe any patent right.

Caution: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, see "DuPont Medical Caution Statement."

LAMINATE SERIES

The fabric laminate series of Vespel[®] CP parts offer an array of fabric types consisting of woven graphite, carbon, glass, Teflon® PTFE, and/or Nomex® aramid fibers bonded together using a variety of polyimide resins, selected to optimize performance versus cost. Laminates are particularly well suited for simple geometries such as strips, wear pads, and washers, but are also used for more complex shapes that require the durability that fabrics offer.

CP-0648				
MECHANICAL	TEST METHOD	SI UNITS	ENGLISH UNITS	
ULTIMATE TENSILE STRENGTH Room Temp. 260°C/500°F	ASTM D-638	150 MPa 130 MPa	22 ksi 19 ksi	
TENSILE MODULUS Room Temp. 260°C/500°F	ASTM D-638	21,000 MPa 19,000 MPa	3,100 ksi 2,700 ksi	
ULTIMATE FLEXURAL STRENGTH Room Temp. 260°C/500°F	ASTM D-790	250 MPa 195 MPa	36 ksi 28 ksi	
FLEXURAL MODULUS Room Temp. 260°C/500°F	ASTM D-790	19,000 MPa 16,000 MPa	2,800 ksi 2,300 ksi	
ULTIMATE COMPRESSIVE STRENGTH [®] Room Temp. 260°C/500°F	ASTM D-3410	170 MPa 140 MPa	25 ksi 20 ksi	
COMPRESSIVE MODULUS ^a Room Temp. 260°C/500°F	ASTM D-3410	23,000 MPa 20,000 MPa	3,400 ksi 2,900 ksi	
SHORT-BEAM SHEAR STRENGTH® Room Temp. @ 260°C/500°F	ASTM D-2344	37 MPa 28 MPa	5.3 ksi 4.0 ksi	
NOTCHED IZOD	ASTM D-256	123 J/m	2.3 ft. lbs./in.	
HARDNESS, ROCKWELL 15-T	ASTM D-2240	79	79	

THERMAL	TEST METHOD	SI UNITS	ENGLISH UNITS
GLASS TRANSITION TEMPERATURE, Tg	Thermal Mechanical Analysis	330°C	626°F
THERMAL EXPANSION COEFFICIENT ^a (21–316°C/70–600°F)	ASTM E-228-85	34.6x10 ⁻⁶ m/m/°C	19.2x10 [.] 6 in./in./°F
THERMAL EXPANSION COEFFICIENT (21-316°C/70-600°F)	ASTM D-696	1.6x10 ⁻ m/m/°C	0.9x10 [.] 6 in./in./°F

OTHER PROPERTIES	TEST METHOD	SI UNITS	ENGLISH UNITS
SPECIFIC GRAVITY	ASTM D-792	1.48 gm/cc	1.48 gm/cc
WATER ABSORPTION (180 hrs. @ 23°C/73°F)	ASTM D-570	2.6% Weight Gain	2.6% Weight Gain

Note: All values listed are for compression-molded samples and are measured in the plane perpendicular to the direction of molding pressure unless otherwise indicated.

^aMeasured in the plane parallel to the direction of molding pressure.

CP-0648 may be processed using a variety of lay-up techniques with single or multiple debulking steps to optimize process capability for each part configuration. These design considerations can cause variation from the typical values listed above. Listed properties are based upon technical data that DuPont believes to be reliable. DuPont makes no warranties, expressed or implied, and assumes no liability in connection with use of this information.

The DuPont Oval Logo®, DuPont™, The miracles of science™, Teflon®, Nomex® and Vespel® are trademarks or registered trademarks of E.I. du Pont de Nemours and Company. ©2003 E.I. du Pont de Nemours and Company. All rights reserved.

	CP-0650		
MECHANICAL	TEST METHOD	SI UNITS	ENGLISH UNITS
ULTIMATE TENSILE STRENGTH Room Temp. 260°C/500°F	ASTM D-638	130 MPa 110 MPa	19 ksi 16 ksi
TENSILE MODULUS Room Temp. 260°C/500°F	ASTM D-638	23,000 MPa 19,000 MPa	3,300 ksi 2,800 ksi
ULTIMATE FLEXURAL STRENGTH Room Temp. 260°C/500°F	ASTM D-790	210 MPa 165 MPa	30 ksi 24 ksi
FLEXURAL MODULUS Room Temp. 260°C/500°F	ASTM D-790	18,000 MPa 15,000 MPa	2,600 ksi 2,200 ksi
ULTIMATE COMPRESSIVE STRENGTH" Room Temp. 260°C/500°F	ASTM D-3410	145 MPa 120 MPa	21 ksi 17 ksi
COMPRESSIVE MODULUS ^a Room Temp. 260°C/500°F	ASTM D-3410	23,000 MPa 22,000 MPa	3,400 ksi 3,200 ksi
SHORT-BEAM SHEAR STRENGTH [®] Room Temp. 260°C/500°F	ASTM D-2344	34 MPa 25 MPa	5.0 ksi 3.6 ksi
NOTCHED IZOD Hardness, Rockwell 15-t	ASTM D-256 ASTM D-2240	144 J/m 80	2.7 ft. lbs./in. 80

THERMAL	TEST METHOD	SI UNITS	ENGLISH UNITS
GLASS TRANSITION TEMPERATURE, Tg	Thermal Mechanical Analysis	330°C	626°F
THERMAL EXPANSION COEFFICIENT ^a (21-316°C/70-600°F)	ASTM E-228-85	30.2x10 ⁻⁶ m/m/°C	16.8x10 [.] 6 in./in./°F
THERMAL EXPANSION COEFFICIENT (21-316°C/70-600°F)	ASTM D-696	4.0x10 ^{.6} m/m/°C	2.2x10 ^{.6} in./in./°F

OTHER PROPERTIES	TEST METHOD	SI UNITS	ENGLISH UNITS
SPECIFIC GRAVITY	ASTM D-792	1.49 gm/cc	1.49 gm/cc
WATER ABSORPTION (180 hrs. @ 23°C/73°F)	ASTM D-570	2.3% Weight Gain	2.3% Weight Gain

Note: All values listed are for compression-molded samples and are measured in the plane perpendicular to the direction of molding pressure unless otherwise indicated.

^a Measured in the plane parallel to the direction of molding pressure.

CP-0650 may be processed using a variety of lay-up techniques with single or multiple debulking steps to optimize process capability for each part configuration. These design considerations can cause variation from the typical values listed above. Listed properties are based upon technical data that DuPont believes to be reliable. DuPont makes no warranties, expressed or implied, and assumes no liability in connection with use of this information.

	CP-0644		
MECHANICAL	TEST METHOD	SI UNITS	ENGLISH UNITS
ULTIMATE TENSILE STRENGTH Room Temp. 260°C/500°F	ASTM D-638	125 MPa 97 MPa	18 ksi 14 ksi
TENSILE MODULUS Room Temp. 260°C/500°F	ASTM D-638	23,000 MPa 16,000 MPa	3,400 ksi 2,300 ksi
ULTIMATE FLEXURAL STRENGTH Room Temp. 260°C/500°F	ASTM D-790	220 MPa 165 MPa	32 ksi 24 ksi
FLEXURAL MODULUS Room Temp. 260°C/500°F	ASTM D-790	21,000 MPa 17,000 MPa	3,000 ksi 2,400 ksi
ULTIMATE COMPRESSIVE STRENGTH [®] Room Temp. 260°C/500°F	ASTM D-3410	140 MPa 100 MPa	20 ksi 15 ksi
COMPRESSIVE MODULUS ^a Room Temp. 260°C/500°F	ASTM D-3410	19,000 MPa 14,000 MPa	2,700 ksi 2,100 ksi
SHORT-BEAM SHEAR STRENGTH" Room Temp. 260°C/500°F	ASTM D-2344	33 MPa 24 MPa	4.8 ksi 3.5 ksi
NOTCHED IZOD Hardness, rockwell 15-t	ASTM D-256 ASTM D-2240	171 J/m 79	3.2 ft. lbs./in. 79

THERMAL	TEST METHOD	SI UNITS	ENGLISH UNITS
GLASS TRANSITION TEMPERATURE, Tg	Thermal Mechanical Analysis	360°C	680°F
THERMAL EXPANSION COEFFICIENT ^a (21–316°C/70–600°F)	ASTM E-228-85	43.2x10 [.] °m/m/°C	24x10 [.] 6 in./in./°F
THERMAL EXPANSION COEFFICIENT (21-316°C/70-600°F)	ASTM D-696	2.3x10 ⁻⁶ m/m/°C	1.3x10 [.] 6 in./in./°F

OTHER PROPERTIES	TEST METHOD	SI UNITS	ENGLISH UNITS
SPECIFIC GRAVITY	ASTM D-792	1.51 gm/cc	1.51 gm/cc
WATER ABSORPTION (180 hrs. @ 23°C/73°F)	ASTM D-570	2.1% Weight Gain	2.1% Weight Gain

Note: All values listed are for compression-molded samples and are measured in the plane perpendicular to the direction of molding pressure unless otherwise indicated.

^aMeasured in the plane parallel to the direction of molding pressure.

CP-0644 may be processed using a variety of lay-up techniques with single or multiple debulking steps to optimize process capability for each part configuration. These design considerations can cause variation from the typical values listed above. Listed properties are based upon technical data that DuPont believes to be reliable. DuPont makes no warranties, expressed or implied, and assumes no liability in connection with use of this information.

SPECIFIC GRAVITY

BRAIDED SERIES

From a wide selection of graphite, carbon, glass, and even Teflon® PTFE fibers, hollow braids are formed and combined with a variety of polyimides to produce bushings that offer the best combination of properties for applications that require the benefits that a composite structure offers. Toughness, thermal resistance, self-lubricity, and wear resistance are the most common requirements for these Vespel® CP products.

CP-8000			
THERMAL	TEST METHOD	SI UNITS	ENGLISH UNITS
GLASS TRANSITION TEMPERATURE, Tg	Thermal Mechanical Analysis	360°C	680°F
THERMAL EXPANSION COEFFICIENT	-	8.3x10 [.] m/m/°C	4.6x10 [.] 6in./in./°F
OXIDATIVE STABILITY 357°C/675°F 321°C/610°F	See note ^a	3.0% Weight Loss —	3.0% Weight Loss —
			1
OTHER PROPERTIES	TEST METHOD	SI UNITS	ENGLISH UNITS

ASTM D-792

1.52 gm/cc

1.52 gm/cc

CP-8001			
THERMAL	TEST METHOD	SI UNITS	ENGLISH UNITS
GLASS TRANSITION TEMPERATURE, Tg	Thermal Mechanical Analysis	349°C	660°F
THERMAL EXPANSION COEFFICIENT	_	8.3x10 ⁻ °m/m/°C	4.6x10 ⁻⁶ in./in./°F
OXIDATIVE STABILITY 357°C/675°F 321°C/610°F	See note ^a	6.2% Weight Loss 2.4% Weight Loss	6.2% Weight Loss 2.4% Weight Loss

OTHER PROPERTIES	TEST METHOD	SI UNITS	ENGLISH UNITS
SPECIFIC GRAVITY	ASTM D-792	1.54 gm/cc	1.54 gm/cc

	CP-8002		
THERMAL	TEST METHOD	SI UNITS	ENGLISH UNITS
GLASS TRANSITION TEMPERATURE, Tg	Thermal Mechanical Analysis	330°C	626°F
THERMAL EXPANSION COEFFICIENT	_	7.2x10 ⁻⁶ m/m/°C	4.0x10 ⁻⁶ in./in./°F
OXIDATIVE STABILITY	See note ^a		
357 C/675 F 321°C/610°F		_ 2.6% Weight Loss	2.6% Weight Loss
		1	1
OTHER PROPERTIES	TEST METHOD	SI UNITS	ENGLISH UNITS
SPECIFIC GRAVITY	ASTM D-792	1.47 gm/cc	1.47 gm/cc

^a 100 hours, 70 psia (483 kPa), circulating air, saturated conditions, volume/surface area = .024 in. (0.61 mm).

Note: Each part configuration is custom-designed to optimize process capability and part performance by adjusting resin/fiber ratios, fiber deniers, and braid construction. These design considerations can cause variation from the typical values listed above. Listed properties are based upon technical data that DuPont believes to be reliable. DuPont makes no warranties, expressed or implied, and assumes no liability in connection with use of this information.

The DuPont Oval Logo®, DuPont™, The miracles of science™, Teflon® and Vespel® are trademarks or registered trademarks of E.I. du Pont de Nemours and Company. ©2003 E.I. du Pont de Nemours and Company. All rights reserved.

THERMAL OXIDATION CURVES FOR CP-8000

(Tests performed in circulating air, saturated conditions.)

VESPEL® CP-9800 SERIES END EFFECTORS

Vespel® CP-9800 is a clean, stiff, light-weight new end effector material. Custom parts made from this pitch-based carbon fiber and epoxy composite are designed specifically for the function required in the application. CP-9800 raw material is produced in a sheet form with a maximum area of 1x2m and a thickness of 2-20mm.

This composite is ideally suited for flat panel display and wafer handling applications. When compared to traditional ceramic and aluminum end effectors, CP-9800 is lighter weight, more durable, and deflects less under equivalent load. These properties make Vespel® CP-9800 the ideal choice for your next robotic end effector application.

CP-9800 SERIES PERFORMANCE COMPARISON – END EFFECTORS

PERFORMANCE/MATERIALS	ALUMINUM (AI)	CERAMIC Alumina (Al ₂ 0 ₃)	CP-9800 ULTRA-HIGH Modulus end Effectors
DENSITY			
g/cm ³	2.70	4.00	1.70
lb/ft³	169	250	106
FLEXURAL MODULUS			
GPa	72	400	300
psi	10 x 10 ⁶	58 x 10 ⁶	44 x 10 ⁶
FINGER THICKNESS			
mm	3	3	3
inch	0.12	0.12	0.12
FINGER WEIGHT			
kg	0.81	1.20	0.50
lb	1.79	2.65	1.10
DEFLECTION			
SELF WEIGHT mm (inch)	6.01 (.24)	1.60 (.06)	0.83 (.03)
LOADING mm (inch)	1.48 (.06)	0.30 (.01)	0.30 (.01)
TOTAL mm (inch)	7.49 (.29)	1.90 (.07)	1.13 (.04)

CHOICE OF RIGIDITY	MODULUS		
ТҮРЕ	SI UNITS	ENGLISH UNITS	
LOW MODULUS	160 GPa	23 x 10 ⁶ psi	
MEDIUM MODULUS	200 GPa	29 x 10⁰ psi	
HIGH MODULUS	250 GPa	36 x 10⁰ psi	
ULTRA HIGH MODULUS	320 GPa	46 x 10º psi	

CHOICE OF RESIN	APPLICATION TEMPERATURE	
ТҮРЕ	SI UNITS	ENGLISH UNITS
REGULAR	80°C	176°F
HEAT-RESISTANCE-A	150°C	302°F
HEAT-RESISTANCE-B	200°C	392°F
HEAT-RESISTANCE-C	230°C	446°F

OUTGASSING OF CP-9800 SERIES IN A VACUUM

SAMPLE	PROPERTIES	SI UNITS	ENGLISH UNITS
CP-9800	Flexural modulus	300 GPa	44 x 10⁵ psi
	Heat-resistance temperature	230°C	446°F

MEASUREMENTS

- Outgassing measurements by NASDA (The National Space Development Agency of Japan). 1)
- Temperature programmed desorption gas analysis. 2)

RESULTS

Outgassing measurements by NASDA: This test is normally conducted to check the materials used for the satellites parts, especially when the outgassing is critical for the system. 1)

SAMPLE	PROPERTIES	SI UNITS	ENGLISH UNITS
TEST CONDITION — ASTM E595-93	Vacuum Temperature Collector plate Sample weight	7.0 x 10 ^{.3} Pa 125°C 25°C 0.25g	10 ⁻ ³ psi 257°F 77°F 5.5 x 10⁴ lbs.
RESULTS	TML (Total Mass Loss) CVCM (Collected Volatile Condensable Material)	0.329% 0.002%	0.329% 0.002%
REMARKS	 Both values cleared the recommendation of NASA (TML<1%, CVCM<0.1%) for the use of satellite parts. 		

2)

Temperature programmed desorption gas analysis CP-9800 series: Heat the sample from room temperature up to 250°C (482°F), and analyze the desorption gas by mass spectrometer.

SAMPLE	PROPERTIES	SI UNITS	ENGLISH UNITS
TEST CONDITION — TDS-M202P (ULVAC)	Temperature Ramp rate Sample weight Vacuum	Room temp-250°C 10°C/min. 1.0 g 10 ⁵ Pa	Room temp-482°F 10°F 0.0022 lbs. 1.45 x 10 ^{.8} psi
RESULTS	The figure below shows the results main gas was identified as H_2O , and $H_$	of the desorption gr d the small amount H ₂ 0 H ₂ 0 10 12 14 16 cular Weight	as analysis. The of H ₂ was observed.
REMARKS	Although the maximum measurer higher than the heat resistant ter no degradation of the resin was of	nent temperature 2 nperature of CP-98C observed.	50°C (482°F) was 10, 230°C (446°F),

LCD HANDLING	CASE 1	CASE 2
MODELING	/	
DATA INPUT	and a second sec	and a second
SIMULATION	N.	
HAND WEIGHT kg (lbs.)	1.2 (2.65)	2.9 (6.39)
SELF WEIGHT Deflection mm (in.) Loading by plate glass total	0.62 (0.0244) 1.22 (0.048) 1.84 (0.0724)	0.48 (0.0189) 0.80 (0.0315) 1.28 (0.050)
WAFER HANDLING	CASE 1	CASE 2
MODELING		
DATA INPUT		
SIMULATION		No.
FINGER WEIGHT kg (lbs.)	0.28 (0.617)	0.24 (0.53)
SELF WEIGHT	0.24 (0.0094)	0.19 (0.00748)

For more information about DuPont[™] Vespel[®]:

UNITED STATES

DuPont Engineering Polymers Pencader Site Newark, DE 19714-6100 Tel: 800-222-VESP Fax: (302) 733-8137

EUROPE

DuPont de Nemours (Belgium) BVBA-SPRL Engineered Parts Center A. Spinoystraat 6 B-2800 Mechelen Belgium Tel: ++32 15 441527 Fax: ++32 15 441408 ASIA-PACIFIC

Japan DuPont K.K. Arco Tower 8-1, Shimomeguro 1-chome Meguro-ku, Tokyo 153-0064 Tel: 03-5434-6989 Fax: 03-5434-6982 Korea DuPont Korea Limited 4/5 Floor, Asia Tower, #726 Yeoksam-dong, Kangnam-ku

Seoul 135-082

Tel: 02-222-5200 Fax: 02-222-5470 Taiwan/ China DuPont Taiwan Limited 13th Floor, Hung Kuo Building 167, Tun Hwa North Road Taipei, Taiwan 105 Tel: 02-719-1999 Fax: 02-712-0460

This information corresponds to our current knowledge on the subject. It is offered solely to provide possible suggestions for your own experimentation. It is not intended, however, to substitute for any testing you may need to conduct to determine for yourself the suitability of our products for your particular purposes. This information may be subject to revision as new knowledge and experience become available. Since we cannot anticipate all variations in actual end-use conditions, DuPont makes no warranties and assumes no liability in connection with any use of this information. Nothing in this publication is to be considered as a license to operate under or a recommendation to infringe any patent right.

Caution: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, see "DuPont Medical Caution Statement."

For more information about DuPont[™] Vespel[®]:

UNITED STATES

DuPont Engineering Polymers Pencader Site Newark, DE 19714-6100 Tel: 800-222-VESP Fax: (302) 733-8137

EUROPE

DuPont de Nemours (Belgium) BVBA-SPRL Engineered Parts Center A. Spinoystraat 6 B-2800 Mechelen Belgium Tel: ++32 15 441527 Fax: ++32 15 441408

ASIA-PACIFIC Japan

DuPont K.K. Arco Tower 8-1, Shimomeguro 1-chome Meguro-ku, Tokyo 153-0064 Tel: 03-5434-6989 Fax: 03-5434-6982

Korea DuPont Korea Limited 4/5 Floor, Asia Tower, #726 Yeoksam-dong, Kangnam-ku Seoul 135-082 Tel: 02-222-5200 Fax: 02-222-5470 Taiwan/ China

DuPont Taiwan Limited 13th Floor, Hung Kuo Building 167, Tun Hwa North Road Taipei, Taiwan 105 Tel: 02-719-1999 Fax: 02-712-0460